Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 969
Filtrar
1.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474547

RESUMO

Enzymatic hydrolysis using pectinase is critical for producing high-yield and quality sea buckthorn juice. This study determined the optimal temperature, time, and enzyme dosage combinations to guide manufacturers. A temperature of 60 °C, hydrolysis time of 3 h, and 0.3% enzyme dosage gave 64.1% juice yield-25% higher than without enzymes. Furthermore, monitoring physicochemical properties reveals enzyme impacts on composition. Higher dosages increase soluble solids up to 15% and soluble fiber content by 35% through cell wall breakdown. However, excessive amounts over 0.3% decrease yields. Pectin concentration also declines dose-dependently, falling by 91% at 0.4%, improving juice stability but needing modulation to retain viscosity. Electrochemical fingerprinting successfully differentiates process conditions, offering a rapid quality control tool. Its potential for commercial inline use during enzymatic treatment requires exploration. Overall, connecting optimized parameters to measured effects provides actionable insights for manufacturers to boost yields, determine enzyme impacts on nutrition/functionality, and introduce novel process analytical technology. Further investigations of health properties using these conditions could expand sea buckthorn juice functionality.


Assuntos
Hippophae , Poligalacturonase , Poligalacturonase/metabolismo , Hippophae/metabolismo , Temperatura , Frutas/química , Hidrólise
2.
Int J Biol Macromol ; 264(Pt 1): 130476, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428761

RESUMO

A whole-cell biocatalyst was developed by genetically engineering pectinase PG5 onto the cell surface of Pichia pastoris using Gcw12 as the anchoring protein. Whole-cell PG5 eliminated the need for enzyme extraction and purification, while also exhibiting enhanced thermal stability, pH stability, and resistance to proteases in vitro compared to free PG5. Magnetic resonance mass spectrometry analysis revealed that whole-cell PG5 efficiently degraded citrus pectin, resulting in the production of a mixture of pectin oligosaccharides. The primary components of the mixture were trigalacturonic acid, followed by digalacturonic acid and tetragalacturonic acid. Supplementation of citrus pectin with whole-cell PG5 resulted in a more pronounced protective effect compared to free PG5 in alleviating colitis symptoms and promoting the integrity of the colonic epithelial barrier in a mouse model of dextran sulfate sodium-induced colitis. Hence, this study demonstrates the potential of utilizing whole-cell pectinase as an effective biocatalyst to promote intestinal homeostasis in vivo.


Assuntos
Colite , Poligalacturonase , Saccharomycetales , Animais , Camundongos , Poligalacturonase/genética , Poligalacturonase/metabolismo , 60435 , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Pectinas/farmacologia , Pectinas/metabolismo , Suplementos Nutricionais
3.
Sci Rep ; 14(1): 5037, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424450

RESUMO

The filamentous Thermoascus aurantiacus fungus characterized by its thermophilic nature, is recognized as an exceptional producer of various enzymes with biotechnological applications. This study aimed to explore biotechnological applications using polygalacturonase (PG) derived from the Thermoascus aurantiacus PI3S3 strain. PG production was achieved through submerged fermentation and subsequent purification via ion-exchange chromatography and gel filtration methods. The crude extract exhibited a diverse spectrum of enzymatic activities including amylase, cellulase, invertase, pectinase, and xylanase. Notably, it demonstrated the ability to hydrolyze sugarcane bagasse biomass, corn residue, and animal feed. The purified PG had a molecular mass of 36 kDa, with optimal activity observed at pH 4.5 and 70 °C. The activation energy (Ea) was calculated as 0.513 kJ mol-1, highlighting activation in the presence of Ca2+. Additionally, it displayed apparent Km, Vmax, and Kcat values of at 0.19 mg mL-1, 273.10 U mL-1, and 168.52 s-1, respectively, for hydrolyzing polygalacturonic acid. This multifunctional PG exhibited activities such as denim biopolishing, apple juice clarification, and demonstrated both endo- and exo-polygalacturonase activities. Furthermore, it displayed versatility by hydrolyzing polygalacturonic acid, carboxymethylcellulose, and xylan. The T. aurantiacus PI3S3 multifunctional polygalacturonase showed heightened activity under acidic pH, elevated temperatures, and in the presence of calcium. Its multifunctional nature distinguished it from other PGs, significantly expanding its potential for diverse biotechnological applications.


Assuntos
Saccharum , Thermoascus , Poligalacturonase/metabolismo , Thermoascus/metabolismo , Celulose , Enzimas Multifuncionais , Saccharum/metabolismo , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Temperatura
4.
Science ; 383(6684): 732-739, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359129

RESUMO

Polygalacturonase-inhibiting proteins (PGIPs) interact with pathogen-derived polygalacturonases to inhibit their virulence-associated plant cell wall-degrading activity but stimulate immunity-inducing oligogalacturonide production. Here we show that interaction between Phaseolus vulgaris PGIP2 (PvPGIP2) and Fusarium phyllophilum polygalacturonase (FpPG) enhances substrate binding, resulting in inhibition of the enzyme activity of FpPG. This interaction promotes FpPG-catalyzed production of long-chain immunoactive oligogalacturonides, while diminishing immunosuppressive short oligogalacturonides. PvPGIP2 binding creates a substrate binding site on PvPGIP2-FpPG, forming a new polygalacturonase with boosted substrate binding activity and altered substrate preference. Structure-based engineering converts a putative PGIP that initially lacks FpPG-binding activity into an effective FpPG-interacting protein. These findings unveil a mechanism for plants to transform pathogen virulence activity into a defense trigger and provide proof of principle for engineering PGIPs with broader specificity.


Assuntos
Fusarium , Phaseolus , Imunidade Vegetal , Proteínas de Plantas , Poligalacturonase , Fatores de Virulência , Imunidade Inata , Proteínas de Plantas/metabolismo , Poligalacturonase/metabolismo , Fatores de Virulência/metabolismo , Fusarium/imunologia , Fusarium/patogenicidade , Phaseolus/imunologia , Phaseolus/microbiologia
5.
Food Chem ; 441: 138298, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38199103

RESUMO

Food quality is greatly impacted by traditional heat methods for polygalacturonase (PG) inactivation; therefore, it's imperative to develop a novel infrared (IR) inactivation approach and identify its mechanism. Utilizing molecular dynamics (MD) simulation, this study verified the PG's activity, structure, active sites, and substrate channel under the single thermal and non-thermal effects of IR. PG activity was significantly reduced by IR, and structure was unfolded by increasing random coils (65.62 %) and decreasing ß-sheets (29.11 %). MD data indicated that the relative locations of PG's active sites were altered by both IR effects, and the enzyme-substrate channel was shortened (10.53 % at 18 µm and 15.79 % at 80 °C). The thermal effect of IR on the inactivation of PG was significantly more pronounced than its non-thermal effect. This study unveiled the mechanism by which the infrared disrupted PG's activity, active sites, and substrate channels; thus, it expanded the infrared technique's efficacy in enzyme control.


Assuntos
Simulação de Dinâmica Molecular , Poligalacturonase , Poligalacturonase/metabolismo
6.
Bioresour Technol ; 394: 130283, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163489

RESUMO

The current research discusses a multidimensional bioprocess development, that includes bioprospecting, strain improvement, media optimisation, and applications of the extracted enzyme. A potent alkalophilic polygalacturonase (PG) producing bacterial strain was isolated and identified as a novel Glutamicibacter sp. Furthermore, strain improvement by UV and chemical mutagenesis not only improved the enzyme (PGmut) production but also enhanced its temperature optima from 37 °C to 50 °C. The use of solid substrate fermentation, followed bystatistical optimisation through PB and RSM, substantially increasedPGmut production. A 10-fold increase in enzyme production (632 U/gm) was observed when sugarcane bagasse with a pH of 10.5, 66.8 % moisture, and an inoculum size of 10.15 % was used. The model's accuracy was supported by p-value (p < 0.0001), and an R2 of 0.9940. A pilot-scale experiment, demonstrated ≈ 62,229 U/100 gm PG activity. Additionally, the enzyme's efficacy in demucilization of coffee beans, and bioscouring of jute fibre indicated that it is a valuable biocatalyst.


Assuntos
Poligalacturonase , Saccharum , Poligalacturonase/metabolismo , Celulose , Bioprospecção , Saccharum/metabolismo , Fermentação
7.
Int J Biol Macromol ; 254(Pt 1): 127804, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37913880

RESUMO

Pectin, a complex natural macromolecule present in primary cell walls, exhibits high structural diversity. Pectin is composed of a main chain, which contains a high amount of partly methyl-esterified galacturonic acid (GalA), and numerous types of side chains that contain almost 17 different monosaccharides and over 20 different linkages. Due to this peculiar structure, pectin exhibits special physicochemical properties and a variety of bioactivities. For example, pectin exhibits strong bioactivity only in a low molecular weight range. Many different degrading enzymes, including hydrolases, lyases and esterases, are needed to depolymerize pectin due to its structural complexity. Pectin degradation involves polygalacturonases/rhamnogalacturonases and pectate/pectin lyases, which attack the linkages in the backbone via hydrolytic and ß-elimination modes, respectively. Pectin methyl/acetyl esterases involved in the de-esterification of pectin also play crucial roles. Many α-L-rhamnohydrolases, unsaturated rhamnogalacturonyl hydrolases, arabinanases and galactanases also contribute to heterogeneous pectin degradation. Although numerous microbial pectin-degrading enzymes have been described, the mechanisms involved in the coordinated degradation of pectin through these enzymes remain unclear. In recent years, the degradation of pectin by Bacteroides has received increasing attention, as Bacteroides species contain a unique genetic structure, polysaccharide utilization loci (PULs). The specific PULs of pectin degradation in Bacteroides species are a new field to study pectin metabolism in gut microbiota. This paper reviews the scientific information available on pectin structural characteristics, pectin-degrading enzymes, and PULs for the specific degradation of pectin.


Assuntos
Pectinas , Polissacarídeos , Pectinas/química , Polissacarídeos/metabolismo , Esterases/metabolismo , Bacteroides/metabolismo , Poligalacturonase/metabolismo
8.
PeerJ ; 11: e16399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38050608

RESUMO

Wheat is the second most important staple crop grown and consumed worldwide. Temperature fluctuations especially the cold stress during the winter season reduces wheat growth and grain yield. Psychrotolerant plant growth-promoting rhizobacteria (PGPR) may improve plant stress-tolerance in addition to serve as biofertilizer. The present study aimed to isolate and identify PGPR, with the potential to tolerate cold stress for subsequent use in supporting wheat growth under cold stress. Ten psychrotolerant bacteria were isolated from the wheat rhizosphere at 4 °C and tested for their ability to grow at wide range of temperature ranging from -8 °C to 36 °C and multiple plant beneficial traits. All bacteria were able to grow at 4 °C to 32 °C temperature range and solubilized phosphorus except WR23 at 4 °C, whereas all the bacteria solubilized phosphorus at 28 °C. Seven bacteria produced indole-3-acetic acid at 4 °C, whereas all produced indole-3-acetic acid at 28 °C. Seven bacteria showed the ability to fix nitrogen at 4 °C, while all the bacteria fixed nitrogen at 28 °C. Only one bacterium showed the potential to produce cellulase at 4 °C, whereas four bacteria showed the potential to produce cellulase at 28 °C. Seven bacteria produced pectinase at 4 °C, while one bacterium produced pectinase at 28 °C. Only one bacterium solubilized the zinc at 4 °C, whereas six bacteria solubilized the zinc at 28 °C using ZnO as the primary zinc source. Five bacteria solubilized the zinc at 4 °C, while seven bacteria solubilized the zinc at 28 °C using ZnCO3 as the primary zinc source. All the bacteria produced biofilm at 4 °C and 28 °C. In general, we noticed behavior of higher production of plant growth-promoting substances at 28 °C, except pectinase assay. Overall, in vitro testing confirms that microbes perform their inherent properties efficiently at optimum temperatures rather than the low temperatures due to high metabolic rate. Five potential rhizobacteria were selected based on the in vitro testing and evaluated for plant growth-promoting potential on wheat under controlled conditions. WR22 and WR24 significantly improved wheat growth, specifically increasing plant dry weight by 42% and 58%, respectively. 16S rRNA sequence analysis of WR22 showed 99.78% similarity with Cupriavidus campinensis and WR24 showed 99.9% similarity with Enterobacter ludwigii. This is the first report highlighting the association of C. campinensis and E. ludwigii with wheat rhizosphere. These bacteria can serve as potential candidates for biofertilizer to mitigate the chilling effect and improve wheat production after field-testing.


Assuntos
Alphaproteobacteria , Celulases , Triticum/genética , RNA Ribossômico 16S/genética , Poligalacturonase/metabolismo , Bactérias/genética , Fósforo/metabolismo , Alphaproteobacteria/genética , Nitrogênio/metabolismo , Zinco/metabolismo , Celulases/metabolismo
9.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069295

RESUMO

Polygalacturonase (PG) is one of the largest families of hydrolytic enzymes in plants. It is involved in the breakdown of pectin in the plant cell wall and even contributes to peel cracks. Here, we characterize PGs and outline their expression profiles using the available reference genome and transcriptome of Akebia trifoliata. The average length and exon number of the 47 identified AktPGs, unevenly assigned on 14 chromosomes and two unassembled contigs, were 5399 bp and 7, respectively. The phylogenetic tree of 191 PGs, including 47, 57, 51, and 36 from A. trifoliata, Durio zibethinus, Actinidia chinensis, and Vitis vinifera, respectively, showed that AktPGs were distributed in all groups except group G and that 10 AktPGs in group E were older, while the remaining 37 AktPGs were younger. Evolutionarily, all AktPGs generally experienced whole-genome duplication (WGD)/segmental repeats and purifying selection. Additionally, the origin of conserved domain III was possibly associated with a histidine residue (H) substitute in motif 8. The results of both the phylogenetic tree and expression profiling indicated that five AktPGs, especially AktPG25, could be associated with the cracking process. Detailed information and data on the PG family are beneficial for further study of the postharvest biology of A. trifoliata.


Assuntos
Genes de Plantas , Poligalacturonase , Filogenia , Poligalacturonase/metabolismo , Transcriptoma , Plantas/metabolismo
10.
J Food Sci ; 88(9): 3725-3736, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37548624

RESUMO

Low-temperature storage is a widely used method for peach fruit storage. However, the impact of PpCBFs on pectin degradation during low-temperature storage is unclear. As such, in this study, we stored the melting-flesh peach cultivar "Fuli" at low temperature (LT, 6°C) and room temperature (RT, 25°C) to determine the effect of different temperatures on its physiological and biochemical changes. Low-temperature storage can inhibit the softening of "Fuli" peaches by maintaining the stability of the cell wall. It was found that the contents of water-soluble pectin and ionic-soluble pectin in peach fruit stored at RT were higher than those stored at LT. The enzyme activities of polygalacturonase (PG), pectate lyase (PL), and pectin methylesterase (PME) were all inhibited by LT. The expressions of PpPME3, PpPL2, and PpPG were closely related to fruit firmness, but PpCBF2 and PpCBF3 showed higher expression levels at LT than RT. The promoters of PpPL2 and PpPG contain the DER motif, which suggested that PpCBF2 and PpCBF3 might negatively regulate their expression by directly binding to their promoters. These results indicated that LT may maintain firmness by activating PpCBFs to repress pectin-degradation-related enzyme genes during storage.


Assuntos
Prunus persica , Prunus persica/metabolismo , Temperatura , Frutas/metabolismo , Pectinas/metabolismo , Poligalacturonase/genética , Poligalacturonase/metabolismo , Parede Celular/metabolismo
11.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37422800

RESUMO

Enzymatic modification of canola meal (CM) is a potential method to enhance its nutritional value as it can depolymerize nonstarch polysaccharides (NSP) and mitigate its potential antinutritive properties. Based on the previous studies, pectinase A (PA), pectinase B (PB), xylanase B (XB), and invertase (Inv) were used for the enzymatic modifications. The highest NSP depolymerization ratio was obtained when 4 g/kg of each PA, PB, and XB, and 0.2 g/kg of Inv were used during 48 h incubation at 40 °C. In the current study, changes in pH, simple sugars, sucrose, oligosaccharides, and NSP contents during the enzymatic modification (CM+E) of CM were measured and compared to Control (CM) without enzymes addition or with the addition of bacteriostat sodium azide (CM+E+NaN3). The results showed that spontaneous fermentation occurred during incubation. After incubation, the pH of the slurry decreased, lactic acid was produced, phytate disappeared, and the concentration of simple sugars decreased substantially. The NSP of the slurry was progressively depolymerized by the enzyme blend. The chemical composition and nutritive value of enzymatically-modified CM (ECM) were evaluated. Ross 308 broilers were randomly assigned to 18 cages of six birds each for the standardized ileal amino acid digestibility (SIAAD) and nitrogen-corrected apparent metabolizable energy (AMEn) assay. A corn/soybean meal-based basal diet formulated to meet Ross 308 breeder recommendations and two test diets contained 70% of the basal diet and 30% of CM or ECM, respectively, were fed to Ross 308 from 13 to 17 d of age. No difference was observed between SIAAD of CM and ECM. The AMEn value of ECM was 2118.0 kcal/kg on a dry matter basis which was 30.9% greater (P < 0.05) than the CM.


Canola meal (CM) is a coproduct of canola oil production which is a valuable protein source for animal nutrition. Its nutritive value can be further enhanced through enzymatic treatment. This process also triggers the fermentation, which results in a decrease in slurry pH, production of lactic acid, disappearance of phytate, and reduction in simple sugars concentration. Moreover, the enzyme blend progressively depolymerized the nonstarch polysaccharides (NSP) of the slurry. No difference was observed between standardized ileal amino acid digestibility of CM and enzymatically-modified CM. The enzymatic modification improved the nitrogen-corrected apparent metabolizable energy of CM for broiler chickens by 30.9%.


Assuntos
Brassica napus , Galinhas , Animais , Galinhas/metabolismo , Poligalacturonase/metabolismo , Digestão , Ração Animal/análise , Metabolismo Energético , Brassica napus/química , Dieta/veterinária , Polissacarídeos/metabolismo , Valor Nutritivo , Aminoácidos/metabolismo , Fenômenos Fisiológicos da Nutrição Animal
12.
Biotechnol J ; 18(11): e2200477, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37458688

RESUMO

Halophytes are the native inhabitants of saline environment. Their biomass can be considered as a potential substrate for the production of microbial enzymes. This study was intended at feasible utilization of a halophytic biomass, Cressia cretica, for pectinase production using a halo- and thermo-tolerant bacterium, Bacillus vallismortis MH 10. The data from fractionation of the C. cretica biomass revealed presence of 17% pectin in this wild biomass. Seven different factors (temperature, agitation, pH, inoculum size, peptone concentration, substrate concentration, and incubation time) affecting pectinase production using C. cretica were assessed through a statistical tool, Plackett-Burman design. Consequently, two significant factors (incubation time and peptone concentration) were optimized using the central composite design. The strain produced 20 IU mL-1 of pectinase after 24 h under optimized conditions. The enzyme production kinetics data also confirmed that 24 h is the most suitable cultivation period for pectinase production. Fourier transform infrared spectroscopy and scanning electron microscopy of C. cretica biomass ascertained utilization of pectin and structural changes after fermentation. The purification of pectinase by using DEAE column yielded specific activity and purification fold of 88.26 IU mg-1 and 3.2, respectively. The purified pectinase had a molecular weight of >65 kDa. This study offers prospects of large-scale production of pectinase by halotolerant strain in the presence of economical and locally grown substrate that makes the enzyme valuable for various industrial operations.


Assuntos
Peptonas , Poligalacturonase , Poligalacturonase/química , Poligalacturonase/metabolismo , Biomassa , Fermentação , Pectinas/metabolismo
13.
Lett Appl Microbiol ; 76(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37496205

RESUMO

The main goal of this study was to examine the efficiency of a newly isolated fungus from quince, Aspergillus tubingensis FAT43, to produce the pectinolytic complex using agricultural and industrial waste as the substrate for solid state fermentation. Sugar beet pulp was the most effective substrate inducer of pectinolytic complex synthesis out of all the waste residues examined. For endo-pectinolytic and total pectinolytic activity, respectively, statistical optimization using Placked-Burman Design and Optimal (Custom) Design increased production by 2.22 and 2.15-fold, respectively. Liquification, clarification, and an increase in the amount of reducing sugar in fruit juices (apple, banana, apricot, orange, and quince) processed with pectinolytic complex were identified. Enzymatic pre-treatment considerably increases yield (14%-22%) and clarification (90%). After enzymatic treatment, the best liquefaction was observed in orange juice, whereas the best clarification was obtained in apricot juice. Additionally, the pectinolytic treatment of apricot juice resulted in the highest increase in reducing sugar concentration (11%) compared to all other enzymatically treated juices. Optimizing the production of a highly active pectinolytic complex and its efficient utilization in the processing of fruit juices, including the generation of an increasing amount of waste, are the significant outcomes of this research.


Assuntos
Sucos de Frutas e Vegetais , Poligalacturonase , Fermentação , Poligalacturonase/química , Poligalacturonase/metabolismo , Açúcares
14.
Mol Plant Microbe Interact ; 36(8): 502-515, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37147768

RESUMO

Lasiodiplodia theobromae attacks over 500 plant species and is an important pathogen of tropical and subtropical fruit. Due to global warming and climate change, the incidence of disease associated with L. theobromae is rising. Virulence tests performed on avocado and mango branches and fruit showed a large diversity of virulence of different L. theobromae isolates. Genome sequencing was performed for two L. theobromae isolates, representing more virulent (Avo62) and less-virulent (Man7) strains, to determine the cause of their variation. Comparative genomics, including orthologous and single-nucleotide polymorphism (SNP) analyses, identified SNPs in the less-virulent strain in genes related to secreted cell wall-degrading enzymes, stress, transporters, sucrose, and proline metabolism, genes in secondary metabolic clusters, effectors, genes involved in the cell cycle, and genes belonging to transcription factors that may contribute to the virulence of L. theobromae. Moreover, carbohydrate-active enzyme analysis revealed a minor increase in gene counts of cutinases and pectinases and the absence of a few glycoside hydrolases in the less-virulent isolate. Changes in gene-copy numbers might explain the morphological differences found in the in-vitro experiments. The more virulent Avo62 grew faster on glucose, sucrose, or starch as a single carbon source. It also grew faster under stress conditions, such as osmotic stress, alkaline pH, and relatively high temperature. Furthermore, the more virulent isolate secreted more ammonia than the less-virulent one both in vitro and in vivo. These study results describe genome-based variability related to L. theobromae virulence, which might prove useful for the mitigation of postharvest stem-end rot. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Ascomicetos , Virulência/genética , Poligalacturonase/metabolismo
15.
Plant Cell ; 35(8): 3073-3091, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37202370

RESUMO

Polygalacturonases (PGs) fine-tune pectins to modulate cell wall chemistry and mechanics, impacting plant development. The large number of PGs encoded in plant genomes leads to questions on the diversity and specificity of distinct isozymes. Herein, we report the crystal structures of 2 Arabidopsis thaliana PGs, POLYGALACTURONASE LATERAL ROOT (PGLR), and ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2 (ADPG2), which are coexpressed during root development. We first determined the amino acid variations and steric clashes that explain the absence of inhibition of the plant PGs by endogenous PG-inhibiting proteins (PGIPs). Although their beta helix folds are highly similar, PGLR and ADPG2 subsites in the substrate binding groove are occupied by divergent amino acids. By combining molecular dynamic simulations, analysis of enzyme kinetics, and hydrolysis products, we showed that these structural differences translated into distinct enzyme-substrate dynamics and enzyme processivities: ADPG2 showed greater substrate fluctuations with hydrolysis products, oligogalacturonides (OGs), with a degree of polymerization (DP) of ≤4, while the DP of OGs generated by PGLR was between 5 and 9. Using the Arabidopsis root as a developmental model, exogenous application of purified enzymes showed that the highly processive ADPG2 had major effects on both root cell elongation and cell adhesion. This work highlights the importance of PG processivity on pectin degradation regulating plant development.


Assuntos
Arabidopsis , Poligalacturonase , Poligalacturonase/genética , Poligalacturonase/metabolismo , Arabidopsis/metabolismo , Pectinas/metabolismo , Proteínas/metabolismo , Parede Celular/metabolismo
16.
J Mol Graph Model ; 122: 108502, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37116336

RESUMO

Polygalacturonase (PG) is an important hydrolytic enzyme involved in pectin disassembly and the subsequent textural changes during fruit ripening. Although the interaction of fungal PGs with other proteins has been documented, the interaction of plant PGs with other plant proteins has not yet been studied. In this study, the molecular mechanisms involved in raspberry fruit ripening, particularly the polygalacturonase (RiPG) interaction with polygalacturonase inhibiting protein (RiPGIP) and substrate, were investigated with a structural approach. The 3D model of RiPG2 and RiPGIP3 was built using a comparative modeling strategy and validated using molecular dynamics (MD) simulations. The RiPG2 model structure comprises 11 complete coils of right-handed parallel ß-helix architecture, with an average of 27 amino acid residues per turn. The structural model of the RiPGIP3 displays a typical structure of LRR protein, with the right-handed superhelical fold with an extended parallel ß-sheet. The conformational interaction between the RiPG2 protein and RiPGIP3 showed that RiPGIP3 could bind to the enzyme and thereby leave the active site cleft accessible to the substrate. All this evidence indicates that RiPG2 enzyme could interact with RiPGIP3 protein. It can be a helpful model for evaluating protein-protein interaction as a potential regulator mechanism of hydrolase activity during pectin disassembly in fruit ripening.


Assuntos
Poligalacturonase , Rubus , Poligalacturonase/química , Poligalacturonase/metabolismo , Rubus/metabolismo , Simulação de Dinâmica Molecular , Frutas/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo
17.
J Microbiol Biotechnol ; 33(4): 533-542, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-36788465

RESUMO

Exo-polygalacturonase (exo-PG) hydrolyzes pectin acids and liberates mono-galacturonate, which plays an important role in juice extraction, and has rarely been reported. Exo-PG (AfumExoPG28A) from Aspergillus fumigatus belongs to the glycoside hydrolase 28 family. In this study, its gene was cloned and the protein was expressed and secreted in Pichia pastoris with a maximal activity of 4.44 U/ml. The optimal temperature and pH of AfumExoPG28A were 55°C and 4.0, respectively. The enzyme exhibited activity over almost the entire acidic pH range (>20.0% activity at pH 2.5-6.5) and remained stable at pH 2.5-10.0 for 24 h. The Km and Vmax values of AfumExoPG28A were calculated by the substrate of polygalacturonic acid as 25.4 mg/ml and 23.6 U/mg, respectively. Addition of AfumExoPG28A (0.8 U/mg) increased the light transmittance and juice yield of plantain pulp by 11.7% and 9%, respectively. Combining AfumExoPG28A (0.8 U/mg) with an endo-PG (0.8 U/mg) from our laboratory, the enzymes increased the light transmittance and juice yield of plantain pulp by 45.7% and 10%, respectively. Thus, the enzyme's potential value in juice production was revealed by the remarkable acidic properties and catalytic activity in fruit pulp.


Assuntos
Aspergillus fumigatus , Poligalacturonase , Poligalacturonase/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Estabilidade Enzimática , Glicosídeo Hidrolases/metabolismo , Temperatura , Concentração de Íons de Hidrogênio
18.
Food Chem ; 415: 135748, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36854238

RESUMO

The present study was conducted to investigate the effects of polygalacturonase (PG) treatment on carotenoid absorption upon digestion of HPH-treated combined peach and carrot juice (CJ) with or without the presence of lipids. Results showed that PG treatment reduced median particle diameter (D50) and viscosity of CJ, and increased total carotenoid bioaccessibility by 41%. In the presence of emulsion, the bioaccessibility of carotenoids was higher and it was not significantly affected by PG treatment. Xanthophylls (lutein and zeaxanthin) had higher bioaccessibility than the more lipophilic carotenes (ß-carotene and α-carotene); also, uptake in Caco-2 cells and transport of lutein and zeaxanthin were higher than for ß-carotene and α-carotene. Individual carotenoids bioaccessibility was negatively correlated with their transport. All together data showed digestion and absorption processes were two independent processes: factors improving carotenoid bioaccessibility did not necessarily affect their bioavailability.


Assuntos
Carotenoides , Poligalacturonase , Poligalacturonase/química , Poligalacturonase/metabolismo , Poligalacturonase/farmacologia , Carotenoides/química , Carotenoides/metabolismo , beta Caroteno/química , Luteína/química , Zeaxantinas/química , Células CACO-2 , Disponibilidade Biológica , Humanos , Sucos de Frutas e Vegetais
19.
Environ Sci Pollut Res Int ; 30(16): 45815-45826, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36708475

RESUMO

This study proposed a novel and cost-effective approach to enhance and optimize the exo-polygalacturonase from P. indica, a root endophytic fungus. In the current investigation, the impact of ammonium sulfate, sugar beet pulp (SBP), and glucose as variables on induction of exo-polygalacturonase from P. indica was optimized using the central composite design (CCD) of response surface methodology (RSM) under submerged fermentation (SmF). Additionally, determination of the exo-polygalacturonase molecular weight and in situ analysis was performed. The optimal reaction conditions, which resulted in the highest enzyme activity, were observed in the following conditions: ammonium sulfate (4 g/L), SBP (20 g/L), and glucose (60 g/L). Under the optimized condition, the maximum enzyme activity reached 19.4 U/ml (127 U/mg), which increased by 5.84 times compared to non-optimized conditions. The exo-polygalacturonase molecular weight was estimated at 60 KDa. In line with the bioinformatic analysis, the exo-polygalacturonase sequence of P. indica showed similarity with Rhizoctonia solani's and Thanateporus cucumeris. These results indicated that SBP acts as a cheap and suitable inducer of exo-polygalacturonase production by P. indica in submerged cultivation. The outcome of this study will be useful for industries to decrease environmental pollution with cost-effective approaches.


Assuntos
Beta vulgaris , Poligalacturonase , Fermentação , Poligalacturonase/metabolismo , Beta vulgaris/metabolismo , Sulfato de Amônio , Açúcares
20.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615596

RESUMO

To increase its operational stability and ongoing reusability, B. subtilis pectinase was immobilized on iron oxide nanocarrier. Through co-precipitation, magnetic iron oxide nanoparticles were synthesized. Scanning electron microscopy (SEM) and energy dispersive electron microscopy (EDEX) were used to analyze the nanoparticles. Pectinase was immobilized using glutaraldehyde as a crosslinking agent on iron oxide nanocarrier. In comparison to free pectinase, immobilized pectinase demonstrated higher enzymatic activity at a variety of temperatures and pH levels. Immobilization also boosted pectinase's catalytic stability. After 120 h of pre-incubation at 50 °C, immobilized pectinase maintained more than 90% of its initial activity due to the iron oxide nanocarrier, which improved the thermal stability of pectinase at various temperatures. Following 15 repetitions of enzymatic reactions, immobilized pectinase still exhibited 90% of its initial activity. According to the results, pectinase's catalytic capabilities were enhanced by its immobilization on iron oxide nanocarrier, making it economically suitable for industrial use.


Assuntos
Enzimas Imobilizadas , Nanopartículas de Magnetita , Enzimas Imobilizadas/metabolismo , Estabilidade Enzimática , Glutaral , Poligalacturonase/metabolismo , Concentração de Íons de Hidrogênio , Nanopartículas Magnéticas de Óxido de Ferro , Temperatura , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...